
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Applicability of GPGPU Computing to

Real-Time AI Solutions in Games
William Blewitt, Gary Ushaw, and Graham Morgan

Abstract

This work reviews developments in General Purpose Computing on Graphics Processor Units (GPGPU Comput-

ing) from the perspective of video game related artificial intelligence. We present an overview of the field, beginning

with early shader language solutions and continuing to discuss three accessible platforms for GPGPU development:

CUDA, OpenCL and DirectCompute. Consideration is given to the commercial and practical realities which hinder

the adoption of GPGPU solutions within video game AI and developments in GPGPU computing directly relevant

to common AI practises within the video games industry are reviewed in depth.

Index Terms

Artificial Intelligence, Games, GPGPU, GPU Computing.

I. INTRODUCTION

Recent developments in GPU technology have, over the past four years in particular, inspired heightened research

interest in the field of general purpose GPU computation. Areas of focus have varied from solvers for complex

mathematics, physics and life sciences simulations to high performance computing and search optimisation [1, 2].

Historically, within the video games industry, hardware limitations and restrictions have compelled developers

to optimise their code so as to make best feasible use of their eventual release platform. While occasionally the

needs of the industry have prompted PC hardware conceptualisation and development [3], commercial concerns

often stymie industrial adoption of that development as companies seek to maximise the potential market of their

game. Adoption of such technologies has been more voluminous in cases where existing hardware that a potential

customer can be assumed to possess already is utilised in novel and useful ways [4, 5].

In the context of artificial intelligence, attempts were made in 2006, by a company called AIseek [6], to pursue

the same model that AGEIA initially adopted: the proposed development of a specialist co-processor card, this

one performing tasks related to artificial intelligence rather than physics. Subsequent lack of industrial interest had

several causes, not least of which related to the difficulties inherent in generating ’distinction’ between game AI and

other properties, and the lack of uniformity where artificial intelligence functions are concerned, but an undeniable

W. Blewitt, G. Ushaw & G. Morgan are with the School of Computing Science, Newcastle University, Newcastle, NE1 7RU, United Kingdom.

Correspondence E-mail: w.f.blewitt@ncl.ac.uk

April 11, 2013 DRAFT



2 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

aspect was an understandable unwillingness to commit products for development solely for consumers willing to

purchase a new, hitherto unnecessary piece of hardware.

The same commercial concerns, both from a context of player enjoyment and limited computational resources,

have often driven a conceptual wedge between artificial intelligence research and artificial intelligence as it is applied

in games [7]. The issue of ensuring an agent within a game environment is always a vehicle for player enjoyment,

with artificial intelligence that reflects this [8], is a largely immobile constraint on the part of game developers. The

ever-expanding capacities and capabilities of the GPU [9], however, may provide a hitherto largely-untapped facility

to extend or expand computing cycles devoted to artificial intelligence processing in games. The issues faced by

those proposing the idea of an AI accelerator card, in terms of requiring another piece of hardware to perform the

task, no longer obtain when GPU cycles can be utilised for the same purpose.

We must be aware of the additional technical constraints that apply to currently available GPUs which impact

their suitability for processing AI algorithms in a gaming context. Often multiple cores share relatively small cache

resources; without careful management of this memory, naive implementations of algorithms on the GPU can lead to

memory access bottlenecks. In addition, the utilisation of the GPU for general purpose computation often requires

extensive copying operations both to and from the graphics memory of the system; this is specifically the case

in situations where the CPU is expected to act upon the results produced by the GPU in some fashion, and the

overhead involved is often non-trivial. These concerns, in conjunction with others discussed in depth later in this

publication, conceptually limit the adoption of GPGPU computation in real-time game AI to tasks which can be

processed within a frame of game time, although recent hardware advances go some way to mitigating these issues

[10].

In this work, we explore the strides made in academic research using GPUs to accelerate tasks traditionally asso-

ciated with artificial intelligence. We do so, however, from a perspective sympathetic to the real-world requirements

of game developers, mindful that much artificial intelligence research is of limited utility in game development as

a function of the aforementioned ’player enjoyment’ constraint.

Initially, we shall discuss the currently available methods and languages by which the computing power of

the GPU may be brought to bear on AI-related tasks. Later, we present some discourse regarding historical

concerns in communicating relevance of artificial intelligence research to the video games industry, and conversely

communicating the needs of that industry to the research establishment.

Subsequently, we consider published evaluations of the potential development platforms and their relative suit-

ability from both a computational and industrial standpoint. Following this, we consider specifically the practises

most often applied within the games industry and discuss in explicit terms how the developments in academic

research can beneficially impact them. Our work then draws to a conclusion.

A. GPGPU Languages

While the advent of GPGPU computing can be considered a relatively recent development in computer science,

the concept of using the graphics processing unit of a computer for purposes other than rendering is not as recent

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 3

as this might imply [11]. Indeed, even the idea of using the GPU as an AI facilitator and accelerator is not an

entirely modern concept [12, 13].

Several early platforms which empowered developers to explore general purpose computing on the GPU are still

used in that fashion today. While the specific purposes of such platforms, including the OpenGL Shading Language

(GLSL) [14], and NVIDIA’s Cg and Microsoft’s HLSL shader languages [15], were primarily to leverage hardware

resources in a graphical context, they provided useful platforms for early GPGPU computing [16]. Indeed, such

techniques are still relevant and currently employed in the context of game technology [17], and have been discussed

explicitly in the context of artificial intelligence algorithms [18].

As the field has matured, building upon the groundwork laid by these legacy techniques, three modern GPGPU

programming languages have received increased attention: NVIDIA’s Compute Unified Device Architecture (CUDA)

[19], the Khronos Group’s Open Computing Language (OpenCL) [20], and Microsoft’s DirectCompute [21].

1) CUDA: CUDA is a proprietary development language designed to give the programmer access to the

computational capabilities of an NVIDIA GPU. Released in November 2006, the NVIDIA GeForce 8800GTX

was the first consumer GPU capable of processing CUDA code. NVIDIA claimed that CUDA brought about a

floating point performance increase, relative to shader code (such as GLSL), of a factor in excess of four when

compared to performance figures from two years prior [22].

In the years since its release, CUDA has been the facilitator for significant academic research and development

[23], as well as ongoing investigations into, and refinements of, its own versatility and optimisation [24].

2) OpenCL: Originally developed by Apple to be released in 2008 as part of their Mac OSX Snow Leopard

[25], OpenCL is a programming framework for programs intended to be executed across heterogeneous platforms;

in this context, heterogeneous meaning computers possessing CPUs, GPUs, FPGAs and other appropriate processors

[26].

OpenCL, as an open standard, is not proprietarily limited to a single vendor’s processors, granting it commercial

flexibility from the perspective of platform-specific development. Like CUDA, OpenCL has been the subject of

academic and industrial research both as a platform for development [27] and in terms of analysis of its own

properties, performance and potential [28, 29].

3) DirectCompute: A more recent development than CUDA and OpenCL, DirectCompute forms part of the

Microsoft DirectX 11 API and, by virtue of backwards compatibility, functions on both DirectX 11 and DirectX

10-compliant GPUs [30]. Its purpose is to provide GPGPU support for programmers using the DirectX API, which

is of particular industrial relevance to game developers.

Like OpenCL, DirectCompute code functions on the graphics processors of multiple vendors, including NVIDIA

GPUs; AMD GPUs and on-CPU graphics accelerators; and, very recently, Intel’s HD4000 on-CPU graphics solution

[31]. Unlike OpenCL and CUDA, DirectCompute is software-platform dependent, due to its relationship with the

DirectX 11 API, and carries an intrinsic requirement that the target platform be running the Microsoft Windows

Vista operating system or later.

April 11, 2013 DRAFT



4 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

B. Research AI from a Gaming Viewpoint

The divide between academic artificial intelligence research and artificial intelligence as it is generally applied and

understood within the video games industry is often characterised as the ’traditional’ disparity between scientists and

engineers [7]. In specific terms, academic research into artificial intelligence often provides solutions to problems

that the video games industry does not require answers to; moreover, academic research into artificial intelligence

can often generate scientifically valuable conclusions that are nevertheless impractical for the video games industry

to employ. Indeed, the techniques and approaches utilised by the academic and industrial establishments regarding

the exploration of artificial intelligence are highly disparate, and only a small proportion of AI research is undertaken

with broader industrial application in mind.

This is particularly relevant respective to the real-time artificial intelligence solutions which the video games

industry necessarily employs, and particularly in the context of artificial intelligence solutions capable of providing

a meaningful increase in perceived performance without impacting the cinematic framerates many video games

are required to sustain. When discussing the adoption of GPGPU computing within commercial titles, this concern

is compounded by concerns relating to the diversion of graphical resources away from rendering tasks. Artificial

intelligence traditionally receives a smaller allocation of resources than graphics in general terms; actively diverting

dedicated graphical resources to it would be a significant paradigm shift. Another concern in the context of GPU-

based artificial intelligence is that often the performance benefits observed from GPU acceleration of a given

algorithm are reached with large data sets or, in the context of per-agent simulations, quantities of agents that are

rarely seen in games.

One often advocated ’solution’ for the problem of mutual understanding between academic AI researchers and

video game engineers, if it is a problem in the traditional sense of the word, is to attempt to facilitate the

understanding within the video games industry that the products of academic research can have implications for

them that are not apparent at first sight. Another, less common approach, is to directly target research interests

and developments such that they are sympathetic to the existing needs of the video games industry and remaining

mindful of the implications this has upon both purpose and platform.

In this article, we attempt to follow both approaches. Initially we consider traditional ’artificial intelligence’

concerns that directly and regularly impact the video games industry, and consider the fashion in which research

into GPU-based AI might support those needs. Subsequent to that, however, we discuss the products of academic

research into artificial intelligence and consider how the video games industry might find relevance within them.

We begin with some discussion of platform considerations, mindful of industrial concerns and constraints.

II. COMPARISON OF GPGPU DEVELOPMENT PLATFORMS

As discussed previously, our interest in the field of GPGPU computing is primarily sympathetic to the commercial

sensibilities of the video games industry. That being the case, we present in this section some detailed discussion

of how the currently available, easily accessible GPGPU development platforms compare in terms of performance;

specifically, we consider CUDA, OpenCL and DirectCompute.

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 5

Following that, we discuss the often-overlooked industrial concerns relating to the fashion in which GPGPU

computing is employed, and the commercial consequences which might impact the selection of development

platform.

A. Real-World Performance Figures

In 2008, Shuai Che et al. [32] published a work reviewing the performance of general purpose applications

implemented for the GPU through CUDA. Their attention was devoted specifically to assessing the effectiveness

of the CUDA GPGPU development platform across a selection of application types, offering some specific sugges-

tions on how to improve their performance on the GPU. Considering structured and unstructured grid problems,

combinatorial logic problems, dynamic programming applications and data mining algorithms, they conclude that

the GPGPU applications obtained ”impressive” speedups, and comment on the ease with which applications could

be developed in CUDA when compared to traditional shader-based approaches.

More recently, Gunasekaran [33] published an overview of GPGPU computing on CUDA, directing its attention to

the structural differences between CPU computing and heterogeneous computing optimised to take advantage of GPU

capabilities. In his work, he stresses the necessity to optimise algorithms to take advantage of parallel architectures

in order to gain the maximum benefit from GPGPU development, and concludes that GPGPU computing is likely

to continue to drive hardware innovation for the forseeable future.

In their 2010 work, Thibieroz and Cebenoyan [34] discussed the optimisation practices necessary to make best

use of the DirectCompute heterogeneous computing platform. In particular, they emphasised the necessity to process

enough work on the GPU to demonstrate a gain in efficiency, and the often overlooked requirement for GPUs to

serve their rendering role in most situations.

Komatsu et al. [35] presented work in 2010 seeking to evaluate performance and portability of programs written

using the OpenCL development platform. Using two benchmark programs, and three CUDA programs adapted

to utilise the OpenCL standard through replacement of keywords and API functions, the work demonstrates that

the OpenCL implementations outperform naive, CPU-based implementations, but are themselves outperformed by

the native CUDA implementations. Komatsu et al. suggest that the lower OpenCL performance they observed

are a combined function of compiler capabilities and the universality of OpenCL precluding platform-specific

optimisations on a machine level.

Similar work performed by Karimi et al. [36] was undertaken to perform direct comparisons between applications

built on the CUDA platform and equivalent applications utilising the OpenCL development platform. As previously,

Karimi et al. observed superior kernel execution times in the CUDA implementations, despite the implementations

running ”nearly identical code”. They conclude that in situations where achieving the highest possible performance

is required, CUDA appears to be the better choice of development platform.

Harvey [37], in 2009, discussed his own experiences in porting code from the CUDA platform to OpenCL. In

converting his implementation of a model for molecular dynamics from CUDA to OpenCL, he determined that it

was feasible to maintain a single code base that worked for both platforms, and that OpenCL on NVIDIA hardware

April 11, 2013 DRAFT



6 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

was almost as efficient as CUDA at the time of writing. He concluded that while CUDA was then the most mature

GPGPU development platform available, OpenCL was a viable alternative.

In their 2011 work, Du et al. [38] published an extensive performance comparison between OpenCL and CUDA.

Implementing a triangular solver and matrix multiplication solution on both software development platforms, they

proceed to compare their performance across hardware platforms from both NVIDIA and AMD/ATI. In their

conclusion, they highlight that overhead in OpenCL is large and should be minimised and, on NVIDIA hardware,

OpenCL is ”fairly competitive” with CUDA.

Fang et al. [39] argue that perceived inefficiencies in the GPGPU applications developed on the OpenCL platform,

relative to similar applications developed on the CUDA platform, are a function of ”unfair comparisons”. While they

acknowledge that, for most applications, CUDA performs at best thirty percent more efficiently than OpenCL, they

state that under a ”fair comparison”, OpenCL can achieve similar performance asserting that fairness is obtained

through optimisations for OpenCL-compliant hardware. Their work focuses on developmental paradigms and flow,

along with some particular consideration of the features CUDA is capable of supporting due to its hardware

platform-specific nature that OpenCL does not in order to sustain its cross-platform portability.

The results of Fang et al. are partially supported by the conclusions of Fratarcangeli [40] who demonstrated in his

2011 work a practical and implemented cloth simulation comparing CUDA, OpenCL and GLSL with a traditional

CPU implementation. In his conclusion, he states that there is evident superiority in the GPGPU implementation over

the CPU implementation; he further points out that GLSL outperforms the more accessible GPGPU development

platforms due to the nature of texture memory being both cached and optimised for two-dimensional local data. In

terms of comparison between CUDA and OpenCL directly, however, he observes a uniformly lower performance

in OpenCL which he attributes to difficulties in tuning of local and global work items.

Where there is a wealth of work directly comparing CUDA and OpenCL implementations of various GPU

computing solutions, DirectCompute has received less academic attention. Zhang et al. [41] consider the use

of DirectCompute in the context of computer vision. Their work revolves around background generation for

object detection in traffic monitoring, and they present and test a DirectCompute-based solution. They observe

a performance increase over and above a CPU-based solution of almost 70%.

Lastly, we consider published work contesting the generally accepted wisdom that GPGPU computation grants

order of magnitude performance increases over optimised, multi-threaded traditional computing. In their 2010 work,

Lee et al. [42] present a set of fourteen throughput computing kernels, with optimised implementations for both CPU

and GPGPU platforms. In their conclusion, they argue that their results demonstrate that GPGPU implementations

on their hardware setup averaged a speedup factor of 2.5.

Similarly, in their 2011 work, Gregg and Hazelwood [43] argue that when memory transfer times are included

in GPU computational activities, GPGPU applications can demonstrate a slowdown of between two and fifty times

when compared to a traditional CPU-based implementation. Benchmarking eleven applications, they conclude that

much reporting regarding the efficiency of GPGPU computation overlooks the overhead generated when data is

transferred between local and global memory, and propose a more revised and open taxonomy which identifies why

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 7

such overhead is overlooked in the context of any algorithm that does not include it within benchmarking.

B. Game Development Practical Considerations

In the context of game development, particularly when considering development for home computers of potentially

widely varying configurations, the exploration of GPGPU solutions to traditional programming tasks demands a

level of critical attention that moves beyond mere floating-point throughput benefits.

The rendering capabilities of graphics processing hardware have increased by orders of magnitude in recent years,

primarily driven by the joint requirements of higher definition displays and closer-to-photo-realistic rendering. In

addition, the minimum GPU requirement to run any PC game remains the primary limiting factor in terms of that

game’s potential market.

Against that backdrop, it is unsurprising that the enthusiasm of the games industry to adopt GPGPU computing

practises has been subdued in comparison to the academic response indicated by the wealth of research considered

in this work. To increase the workload on the GPU carries, by logical extrapolation, either a limitation to the

rendering capabilities of the targeted hardware, making the game arbitrarily less visually appealing, or a limitation

of target sales market by increasing the specifications necessary to run the game.

As such, the value of GPGPU computation to the games industry is best emphasised through research which

demonstrates that a consumer graphics card can sustain both the GPGPU enhancements to which the research

obtains and a fully rendered environment running at a cinematic framerate, such as the works of Shopf et al. [44].

Quite aside from the graphical considerations are the arguments about which development platform to adopt were

a company to implement, in this context, GPU-based artificial intelligence solutions. Unlike physics simulation,

which the success of optional-activation proprietary engines such as PhysX have demonstrated can be conceptually

scalable, the artificial intelligence of any game development cannot be treated in that fashion.

To put it another way a commercial title utilising PhysX, a physics calculation platform bound to contemporary

NVIDIA graphics cards, can still be purchased and played by consumers using graphics cards from a different

vendor, simply with less optimised physics-based visuals. Providing that sort of scaling in artificial intelligence

requires far more complex decisions to be taken in early stages of development, if it is even feasible in the genre

of a specific game to begin with. Ultimately, any non-transferable increase in artificial intelligence computation

that impacts actual gameplay, rather than cosmetic enhancements to game experience, inherently changes the game

from platform to platform.

As such, selection of a GPGPU platform can have profound impact upon the limitation of potential consumer

base, or increase in development cost. We also should not overlook the current disparity in hardware between

personal computer platforms and console platforms, which necessarily impacts the suitability of GPGPU techniques

for titles being released across multiple platforms.

Of the three easily accessible GPGPU development platforms this work has considered, only one can be considered

universally portable on both a hardware platform and software platform level, and that only in the context of personal

April 11, 2013 DRAFT



8 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

computer hardware. OpenCL as a standard was envisioned with just that requirement in mind, and much work has

been performed exploring its real-world portability [45].

A consequence of that portability, as has been indicated by the comparison studies published since the release

of OpenCL and referenced earlier in this section, is that in real-world applications OpenCL often performs less

optimally than NVIDIA’s CUDA platform. But in selecting CUDA as her development platform of choice, a PC

game developer immediately slashes her target market through the exclusion of customers with AMD/ATI graphics

hardware and those using Intel graphics solutions.

One potential solution to this issue was presented by Jacob et al. [46] in 2010. Their tool, CUDACL, was designed

to enable applications written for one platform to be swiftly and economically converted to run on the other. Taking

into account perceived inefficiencies in OpenCL applications relative to their direct CUDA equivalents, this style

of solution invites an approach similar to that taken with the PhysX engine, whereby GPU performance of AI

calculations might be faster on the hardware of a specific vendor, but still function on the hardware of any vendor.

Another consideration is the limitation of software platform compatibility. The DirectCompute API, for example,

limits the potential market of a given title to the Windows family of operating systems (Vista or later). While this

is obviously of concern to developers wishing to publish titles which take advantage of the hardware universality

found in modern computers using Mac OSX-based systems, it is in many ways a less profound concern than that

of alienating graphics hardware vendors. Indeed, in situations where a game engine has been developed with the

DirectX API in mind, such as the most recent iteration of the Unreal Engine, there is no inherent commercial

consequence to adopting the DirectCompute platform, saving those already discussed in terms of consequence to

graphics processing.

In addition, most AAA developers release titles across multiple platforms, including games consoles, simultane-

ously, and have mechanisms in place to handle parallel development across disparate hardware. With the advent

of fixed-specification, high performance personal computer platforms, such as Valve’s Steam PC, there may be

commercial sustainability in developing with such fixed specifications in mind.

Further to this, developments by CPU vendors AMD and Intel in recent times have provided OpenCL and

DirectCompute-compliant graphics accelerators as onboard additions to the CPU. While these solutions were, ini-

tially, primarily designed to permit energy-efficient gaming for low-specification applications, the latest generations

have demonstrated suitability to manage the graphics in AAA titles at moderate resolutions. In most cases, however,

game developers require that the consumer have a discrete graphics card in their system as an element of the

minimum technical specifications of the product. As such, these on-board graphics solutions provide a potential

avenue for the pursuit of ’AI-acceleration’ through OpenCL or DirectCompute utilising processor scheduling that

would otherwise be untapped.

In the context of interfaces designed to maximise versatility of a chosen GPGPU platform of development, JCUDA

was presented by Yonghong Yan et al. [47] in 2009. Designed as a user-friendly interface to accelerate Java programs

on CUDA-compliant GPUs, it was tested using four Java Grande benchmarks and demonstrated speedups ranging

from six times to over one-hundred-and-twenty times. A similar concept proposed by Dotzler et al. [48] in 2010,

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 9

extended the idea of CUDA-accelerated Java to the Open Multi-Processing (OpenMP) standard, again highlighting

the value of platform portability. Both of these contributions highlight useful versatility in development platform,

inviting game developers operating in Java to leverage GPU resources for general purpose computation.

III. GPU DEVELOPMENTS IN EXISTING GAME AI PRACTISES

In this section, we present a review of advances GPGPU computing has provided in areas of artificial intelligence

that the video games industry already readily employs.

Zamith et al. [49] discussed in explicit terms how the advent of GPGPU computing could directly affect

architectural concepts in game engine development. This work is of interest primarily due to the approach taken with

respect to acknowleding the primacy of heterogeneous hardware architectures and working within the constraints

inherent to them so as to optimise hardware utilisation, rather than promoting a complete architectural shift.

For our part, however, we consider specific aspects of ”artificial intelligence” as practised by the video games

industry, broken down into four areas. First, we shall consider pathfinding and navigation as implemented on the

GPU. After that, we review developments in GPGPU research with an impact on line of sight and neighbour

detection. Third, we consider fashions in which the GPU has impacted traditional search systems. Lastly, we review

implementations of finite state machines on GPGPU platforms.

A. Pathfinding and Navigation on the GPU

Almost all video games require some form of navigational artificial intelligence to inform the behaviour of NPCs.

This might be as simple as reciprocal movement between two points in two-dimensional space, as demonstrated

in many platform adventure games of the 1980s, or as complex as a police car pursuing a player driven vehicle in

a three-dimensional environment replete with other vehicles, destructible terrain, pedestrians, and any of a number

of other hazards.

When discussing video game pathfinding, however, it is common to refer back to one of the most often and

readily implemented algorithms for determining the shortest unobstructed path between two points, A* [50, 51].

Optimisations to A* are commonplace in game development [52, 53], as are refinements to its implementation to

make it more versatile or intelligent [54]. At its heart, however, A* remains a cornerstone of game development

and has been used in real-time path planning for decades.

Avi Bleiweiss [55] presented his CUDA-based GPGPU solution for A* pathfinding in 2008, alongside a similar

implementation of the classical Dijkstra search algorithm. He addresses issues associated with implementing an

irregular and divergent A* kernel on a hardware platform which optimally excels in regular, highly arithmetic

processes; further to this, he presents an optimal solution to the issue of parallelising A*. His conclusions indicate

a speedup of an order of magnitude over a two-threaded C++ A* algorithm running on a dual core CPU with

Streaming SIMD Extensions.

Silva et al. [56] presented an evolution of Bleiweiss’s work with their own implementation of A* for the GPU

using CUDA. Usefully, their work explored the impact of larger maps than Bleiweiss’s 340 nodes, managing to

April 11, 2013 DRAFT



10 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

sustain a map of 2025 nodes with 65536 agents, or 300000 agents on a map of 400 nodes. They acknowledge in

their conclusion that their relative speedup over the CPU implementation is lower than that obtained by Bleiweiss in

2008, and they observe that a limiting constraint remains the memory available on GPUs at the time of publication.

Somewhat earlier, in 2006, Zioma [57] proposed a pathfinding solution that offloaded the majority of the

preprocessing workload onto the GPU. In his work, he addressed shader-based implementations of both the Dijkstra

algorithm and the Floyd-Warshall algorithm, outlining the process of managing data structures as textures through

the DirectX API. His results demonstrated modest speedups in the context of the GPGPU implementation of

Dijkstra over the CPU implementation, less than a factor of six at optimal conditions; more usefully, the GPGPU

implementation of the Floyd-Warshall algorithm demonstrated speedups relative to the CPU implementation of

Dijkstra, in some cases, of over one hundred times.

These results highlight a point raised by Buluç et al. [58] in their 2010 work regarding the solution of path

problems on the GPU. Utilising the CUDA platform, they implemented a pathfinding algorithm based upon block-

recursive elimination. They stress in their conclusion that selecting an algorithm which makes best possible use of

the hardware resources available to it is essential in designing any high performance computing solution, including

those applied to GPUs; their results indicate that their optimised implementation outperformed a port of the ”most

popular” algorithm to GPU.

An alternative navigation system proposed by Dapper et al. [59] and based upon an extension of Laplace’s

Equation, was implemented using the CUDA platform by Fischer et al. [60] in 2009. Generating a family of

potential field functions lacking local minima, resolved as a boundary value problem, Fischer et al. tested their

GPGPU implementation across three different map sizes. Their results demonstrated that the GPGPU implementation

performed generally faster than the CPU implementation, with larger maps obtaining greater speedups; the optimal

setup for parallelisation demonstrated a speedup of 56 times relative to the CPU implementation.

In 2008, Shopf et al. [44] demonstrated a highly successful implementation of multi-agent navigation on both

a global and local level through GPGPU technology. Global navigation was managed through variable potential

fields and a variant of Dijkstra’s method known as the Fast Marching Method [61], guiding the agents along their

general path. Noting that this solution for the eikonal equation became prohibitively expensive if applied to local

navigation, Shopf et al. implemented a local avoidance model to avoid collisions against fine-grained obstacles.

Their testing system setup was, by current standards, readily obtainable in a consumer computer, and demonstrated

the ability to manage and render approximately 65,000 agents with a framerate in excess of 30 frames per second.

Bleiweiss [62] presented, in 2009, an approach to manage navigation using Velocity Obstacles [63] built on

the CUDA platform and optimised for multi-agent systems. In the work, Bleiweiss addresses the issue of idling

processors for managing scenarios with a low agent count through proposal and formulation of a velocity level, nested

parallel solution. Bleiweiss observes a performance speedup of over four times, relative to the CPU implementation,

and an interactive framerate of 18 frames per second during an evacuation scenario featuring 10,000 agents.

You Zhou and Ying Tan [64] published an implementation of a GPU-based particle swarm navigation solution

built upon the CUDA platform, which they extended in 2011 [65] to manage swarms with multiple objectives. In the

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 11

former case, they highlight the benefits of mass-parallelisation of processed work packets with respect to management

of swarms, before presenting a parallelised solution to the computation of fitness values, updating particle state, and

resolving velocity and position. They conclude that the running time of the GPGPU implementation is significantly

shortened, relative to the running time of the CPU implementation, with certain situations demonstrating a speedup

in excess of eleven times. Regarding their subsequent work on multi-objective swarms, they conclude that similar

speedups are observed, though the GPGPU implementation is best applied to large-scale simulations.

In 2008, Passos et al. [66] presented a CUDA-platform implementation of flocking boids taking advantage of data

structures optimised for applicability to mass-parallelised GPGPU computing. Providing an exhaustive description

of the manner in which the data structures handling boid data are processed, they go on to demonstrate significant

performance increases on the GPGPU implementation of boid navigation, relative to the CPU implementation, in

situations where the number of boids exceeds 10000. Further to this, utilising consumer PC hardware, their GPGPU

simulation processes 1048576 boids at a framerate of 25 frames per second.

Taking a different approach, focusing upon estimated self-occlusion, da Silva et al. [67] presented an implementa-

tion of flocking boids utilising GPU hardware using texture mapping and shader programming. Their experimental

results, obtained using a less capable GPU than those of Passos et al. demonstrated a speedup of the GPGPU

implementation relative to the CPU implementation for all values of boids, though the speedup was somewhat

irregular at boid counts below 10000.

In 2012, dos Santos et al. [68] published a comprehensive work addressing the parallelisation of the FIPA

architecture for multi-agent systems. Their test case explores the performance of their system when applied to A*

pathfinding for a massively multi-agent environment. They conclude that their results call for future exploration

into agent-oriented paradigms, implemented using the GPU.

Demeulemeester et al. [69] presented work in 2011 which also addressed the issue of path planning for large

numbers of agents using the GPU. They utilised a hybridised approach which included an initial, coarse A* stage

to guide an implementation of the continuum crowds algorithm in order to reduce its computational expense. Their

results demonstrated successful, real-time rendering and path-planning for up to 100,000 agents using a common

consumer graphics card.

B. Line of Sight and Detection on the GPU

Determination of detection of a target, and viable line of sight between an agent and a target or a player character

and a target, are key artificial intelligence-related tasks in many game genres. They are of particular relevance to

developers working on FPS-style games, and the optimisation of those tasks in any three-dimensional rendered

environment can greatly reduce their processor scheduling requirements [70].

Manocha [71] highlighted the benefits of applying GPGPU computation to geometric algorithms, such as line

of sight determination, in 2005. He notes ”more than an order-of-magnitude” improvements over contemporary

CPU-based solutions to problems within that family, including collision detection. This point is re-emphasised by

April 11, 2013 DRAFT



12 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

Kalyan [72] who, in 2006, referred to line of sight calculations for battlefield simulations as one possible application

for GPGPU technology.

Verdesca et al. [73] presented work in 2005 discussing the manner in which GPGPU computing could increase

the processing speed of the One Semi-Automated Forces (OneSAF) Computer Generated Forces (CGF) simulation.

OneSAF is a distributed computer simulation designed to simulate unit behaviour in military scenarios; importantly,

it operates at entity-level, with agents in the simulation representing individual personnel, facilitating highly detailed

behavioural projections.

One aspect of this work addressed the implementation of a GPGPU-based solution for line-of-sight computation,

prompted by the impact that line-of-sight determination for thousands of agents within the simulation had upon

runtime performance. They concluded from their benchmark performance that outsourcing line-of-sight calculations

to the GPU provided a realtime increase in performance of twenty times.

The specific algorithm Verdesca et al. applied to OneSAF was first published by Salomon et al. [74] in 2004.

Their experimental results demonstrated an average time per query of four microseconds, a constant time speedup

in line of sight computation; they further highlight the fact that in many simulations, line-of-sight computation can

be the most expensive within the simulation, and their belief that exploiting the GPU to that purpose is a valuable

effort.

In his 2010 work, Britton [75] presents a CUDA-based implementation of recursive ray-tracing on the GPU.

Within this implementation, he discusses ray-based determination of line-of-sight between a camera and an object

as a means of determining which objects the renderer can ”see”, implemented on the GPU as a part of the overall

renderer architecture.

In the context of agent detection, Jia Pan et al. [76] presented an efficient solution for k-nearest-neighbour

computation on the GPU in 2010. Structured as a support for agent motion planning, their algorithm was parallelised

and implemented on the CUDA development platform. Their experimental results indicated that their GPGPU

implementation outperformed the comparative CPU implementation by a factor between twenty and forty, dependent

upon the system’s constraints.

Peinado’s [77] work in 2010 addressed similar concerns, presenting an optimised solution for nearest-neighbour

classification using the OpenCL development platform. His experimental results reinforced earlier points regarding

the requirement to optimise GPU code to offset hardware limitations; in particular, he notes the manner in which

memory access can have significant influence over performance.

In addition, the works of Passos et al. and de Silva et al., previously discussed in the context of path planning, have

particular relevance to the issue of line of sight and neighbour detection utilising the GPU. Both implementations

rely upon near neighbour detection; in the case of de Silva et al., self-occlusion is a fundamental aspect of their

algorithm. In 2009, de Silva et al. [78] released an extension of their work presenting a more detailed consideration

of agent vision. Their results reinforced earlier conclusions regarding the performance benefits of GPU utilisation

and the value of self-occlusion, or visibility culling, to performance with minimal impact upon model behaviour.

The work of Passos et al. was later expanded upon by Joselli et al. [79] in their extension of the neighbourhood

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 13

data structure into the neighbourhood grid and its implementation on the GPU as a means of governing the behaviour

of large numbers of boids. Their results demonstrated a noticeable speed-up relative to traditional solutions through

subdivision of environment, with a smaller memory footprint.

C. Search Algorithms on the GPU

Search algorithms play a significant role in any user-interactive software development, and are particularly relevant

in games engineering. The most common application for search algorithms has, of course, already been touched

upon in the context of pathfinding, as nodal navigation is an easily translateable concept [80]. An example of

relevance to game development was published by Isla [81] in 2006, addressing the concept of target tracking and

search through application of occupancy maps. In addition, techniques such as goal-oriented action planning [82]

can be enhanced by accelerated search techniques.

Krüger et al. [83] published work in 2010 addressing the subject of a generic, hybrid local search algorithm

developed on the CUDA platform for the GPU. Their specific implementation combined an evolutionary algorithm

with a local search algorithm, the goal being to minimise search time overall. The observed speedup in performance,

relative to a CPU implementation of the same process, varied between forty-seven times and ninety-five times, with

the higher speedup values being observed at higher population sizes and iterations.

In their 2009 work, Edelkamp and Sulewski [84] explored the concept of parallel state space searching using the

GPU. They outline the applicability of the search schema to obtaining solutions for games such as the Rubik’s Cube

and Sliding-Tile Puzzle, before presenting the implementation of a breadth-first heuristic search on the GPGPU

platform. The experimental results indicated a speedup of thirty times, or more, for the GPGPU implementation

compared with a CPU implementation tasked to the same search.

In 2010, Ryan [85] presented a CUDA-based implementation of the Boyer-Moore string searching algorithm,

adapted for the GPGPU platform. Directing particular focus to the nature of GPU memory management, and the

benefits or otherwise of ”mapping” and ”pinning” memory within a CUDA application, Ryan’s work demonstrated

that the GPU could accelerate the Boyer-Moore search algorithm by some sixty percent, but that mapping and

pinning the memory did not increase the application’s performance.

Rocki and Suda [86] considered the issue of parallel minimax tree searching on the GPU in 2009, implementing

their solution using the CUDA platform. They highlight the relevance of the minimax algorithm to search of game

trees, their particular implementation being based upon the rule set for the game Othello. Highlighting the fact that

CUDA did not permit recursion at that time, requiring them to adopt a modified, iterative variant upon the minimax

algorithm, they go on to present the fashion in which the problem is parallelised. Their experimental results led to

their concluding that the GPGPU implementation only outperformed the CPU implementation when the algorithm

was adapted to suit batch processing; indeed, they state that a direct port occasionally showed worse performance.

In situations where a high level of parallelism existed, however, the GPGPU implementation showed a speedup of

approximately thirty-two times, relative to the CPU implementation.

Rocki and Suda [87] extended this work in 2012, through exploration of the acceleration of Monte Carlo Tree

April 11, 2013 DRAFT



14 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

Search methods through GPGPU implementation. Again using Othello as the basis for their game scenario, they

concluded that the GPGPU implementation outperformed the CPU implementation, with the GPU performing

calculations equivalent to between sixty-four and one-hundred-and-twenty-eight CPUs.

Along similar lines, Bleiweiss [88] presented work in 2010 addressing the applicability of GPGPU computing

to the field of zero-sum games, including three-dimensional naughts and crosses, Connect-4, and Othello (Reversi).

Applying a variant of the minimax algorithm to a four-by-four-by-four naughts and crosses, Bleiweiss’s results

indicate that the GPGPU implementation is outperformed by the CPU implementation until four-thousand matches

are played simultaneously, whereupon the parallelised nature of the GPU demonstrates noticeable speedup; at 16000

parallel matches, the speedup of the GPGPU implementation is over five times.

D. Finite State Machines on the GPU

Finite state machines (FSMs) are a mainstay of artificial intelligence within video games, and have been for some

years. One of the most commonly referenced examples is that of Pac-Man, the ”Ghosts” in which were governed

by finite state machines [89]. Optimisation and design of finite state machines to facilitate straightforward game

development has been of some research interest historically [90].

In the context of finite automata implemented on the GPU, some significant efforts have been made even prior

to the advent of easily accessible GPGPU development platforms such as OpenCL and CUDA. In 2005, Rudomı́n

et al. [91] presented an implementation of finite state automata using fragment shaders through GLSL. While the

work was primarily proof of concept, rather than performed with a view to comparing efficiency with traditional

implementations, it successfully demonstrated the viability of implementing a predator-prey FSM on the GPU.

Hayenga and Shaw [92] explored the concept of extended finite automata implemented on the GPU and the

Cell Broadband Engine using the RapidMind Development Platform. An extension of deterministic finite automata

designed to circumvent their ”state explosion weakness”, extended finite automata are thus more versatile from a

game development perspective. While Hayenga and Shaw’s implementation found the RapidMind platform unsuited

to their purposes, a purely GPGPU-based solution presented by Goyal et al. [93] demonstrated a speedup of up to

nine times relative to a comparable CPU implementation.

In their 2009 paper, Joselli and Clua [94] implemented virtually an entire game engine on the GPU, featuring

agents governed by finite state machines. They presented their CUDA-based solutions to governing agent behaviour,

game physics and rendering, proposing in their conclusion that future work should include the implementation of

fuzzy logic, artificial neural networks, and hierarchical state machines.

Leung et al. [95] presented a solver for real time collision detection in their 2010 work, referencing implemen-

tations on both the GPU and the Field Programmable Gate Array (FPGA). Describing their system as a finite state

machine with thirty-eight states, Leung et al. discuss and compare the performance of both the GPU and FPGA

implementations; they conclude that the FPGA outperforms the GPGPU implementation in general terms by a factor

of eleven, though their experimental results indicate that the execution time of the GPGPU implementation is lower

than that of the FPGA implementation at vertex counts in excess of two-hundred-and-fifty.

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 15

In terms of cellular automata, Richmond et al. [96] address the concept of cellular level agent-based simulations

implemented through a GPGPU development platform known as the Flexible Large-Scale Agent Modelling Envi-

ronment (FLAME). In their work they present a schema by which FSMs and extensions thereof can be implemented

through their platform using extensible mark-up language (XML) model files. Their conclusions focus upon the

successful implementation of their development platform, and its universality.

A final consideration in the context of finite state machines implemented on the GPU is inspired by the work of

White et al. [97] in 2007. In their work, they propose the application of an SQL-based scripting language utilising

queries to replace traditional FSM structure. Through this architecture, they demonstrate that their system can update

the state of more than 12000 units, ten times per second, while a naive FSM implementation utilising the same

hardware cannot scale to 1100 units. They conclude that their system is robust and expressive, faciliating both

enhanced performance and greater versatility than traditional approaches.

Bakkum and Skadron [98] proposed, in their 2010 work, a method by which SQL database operations might

be accelerated through usage of GPGPU technology, constructed on the CUDA platform. Their work focuses on

accelerating SELECT queries, the queries which comprise the bulk of the SQL-based FSM proposed by White et

al.; furthermore, Bakkum and Skadron devote significant attention to utilizing the memory hierarchy of the CUDA

platform, with the databases upon which queries are acting being stored in global memory as they would ideally

be in a game development scenario where on-GPU memory is preferably dedicated to graphical data. Their results

demonstrate a speedup over a CPU-based implementation of the same queries of up to eighty times in scenarios

where results transfer time is ignored, and up to thirty-five times in scenarios where it is not.

In his 2010 work, Hristov [99] proposed a similar acceleraton schema for SQL-like queries using the OpenCL

development platform rather than CUDA. One consequence of this selection of development platform was that the

resulting application could run on either the GPU or the CPU and while Hristov found the performance of the

GPU to be limited by the low memory throughput between host and device for small amounts of data, the OpenCL

implementation did show improvement over the traditional implementation when run on the CPU itself.

This, combined with the considerations of Bakkum and Skadron, gives significant encouragement to the propo-

sition that the work of White et al. would generate significantly greater improvements in multi-agent behavioural

governance if revisited with a view to optimising the SQL-style queries through a heterogeneous computing platform.

IV. CONCLUSION

This work has considered extensively fashions in which existing practises in video game development, which

might traditionally fall outside the purvue of artificial intelligence research, have benefited from research into

GPGPU computation. Such considerations have included references to observed, real-world speed benefits, and

suggestions have been made regarding how current and prior work might be expanded in light of developments in

GPGPU technology. Specifically, the work has proposed an exploration of the concepts suggested by White et al.

[97] with respect to replacing traditional FSM architectures with SQL-style database queries, in light of the results

obtained by Bakkum and Skadron [98] in their exploration of CUDA-accelerated SQL queries.

April 11, 2013 DRAFT



16 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

The work has presented discourse regarding commercial implications of adopting GPGPU techniques for the

processing of artificial intelligence solutions. It has suggested paradigms that future GPGPU research undertaken

with a view to appealing to that industry might wish to pursue, particularly regarding the design of prototype

implementation and platform selection for portability.

Further, it has suggested fashions in which the commercial concerns of GPGPU development might be offset

through utilisation of existing solutions, such as the CUDACL solution produced by Jacob et al. [46]. Similarly, the

work has proposed further exploration of the manner in which the computational capabilities of existing hardware

might be suitably leveraged in the context of video game AI. Specifically, the authors intend to investigate the

heterogeneous computational capabilities of the on-CPU, OpenCL and DirectCompute-compliant graphical solutions

developed in recent times by Intel and AMD/ATI, and their viability as artificial intelligence coprocessors.

The work has concluded that in order for GPU-based artificial intelligence solutions to truly appeal to the video

games industry, they must be pursued in a fashion sensitive to the commercial realities in which that industry is

compelled to operate.

ACKNOWLEDGEMENTS

The authors wish to thank the review panel, and Phil Scott of NVIDIA, for their valuable contributions in support

of this work.

REFERENCES

[1] M. Abshoff and C. Pernet, “Efficient exact linear algebra over gpu,” Presentation, August 2008.

[2] T. Carneiro, A. E. Muritiba, M. Negreiros, and G. A. L. de Campos, “A new parallel schema for branch-and-bound algorithms using

gpgpu,” in Proceedings of the 23rd International Symposium on Computer Architecture and High Performance Computing, 2011.

[3] AGEIA, “White paper: Ageia physx,” Computer Power User, vol. 5, no. 10, pp. 44–47, October 2005.

[4] M. Mittring and B. Dudash, “The technology behind the directx 11 unreal engine ”samaritan” demo,” in Proceedings of Game Developers

Conference 2011, 2011.

[5] J. Craighead, J. Burke, and R. Murphy, “Using the unity game engine to develop sarge: A case study,” in Proceedings of the 2008

Simulation Workshop at the International Conference on Intelligent Robots and Systems, 2008.

[6] AIseek, “Aiseek - intelligence for new worlds,” White Paper, 2006.

[7] C. Baekkelund, “Academic ai research and relations with the game industry,” in AI Game Programming Wisdom 3, S. Rabin, Ed. Charles

River Media, Inc., Massachusetts, 2006, ch. 1.7, pp. 77–88.

[8] L. Lidén, “Artificial stupidity: The art of intentional mistakes,” in AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media,

Inc., Massachusetts, 2004, ch. 1.4, pp. 41–48.

[9] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified graphics and computing architecture,” IEEE Micro, vol. 28,

no. 2, pp. 39–55, 2008.

[10] NVIDIA, “Nvidia’s next generation cuda compute architecture: Kepler gk110,” White Paper, 2012.

[11] M. Macedonia, “The gpu enters computing’s mainstream,” Computer, vol. 36, no. 10, pp. 106–108, 2003.

[12] U. Erra, R. D. Chiara, V. Scarano, and M. Tatafiore, “Massive simulation using gpu of a distributed behavioral model of a flock with

obstacle avoidance,” in Proceedings of the International Workshop on Vision, Modeling and Visualization, 2004.

[13] C. J. Darken, E. R. Pursel, and J. S. Correia, “Ai on the gpu,” in ACM Workshop on General Purpose Computing on Graphics Processors,

2004.

[14] J. Kessenich, D. Baldwin, and R. Rost, The OpenGL Shading Language, Version 1.1, OpenGL Architecture Review Board, 2004.

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 17

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose computation

on graphics hardware,” in Eurographics 2005, State of the Art Reports, August 2005, pp. 21–51.

[16] L. Latta, “Building a million particle system,” in Proceedings of Game Developers Conference 2004, 2004.

[17] D. J. Morris, E. F. Anderson, and C. Peters, “A modular framework for deformation and fracture using gpu shaders,” in Proceedings of

VSMM 2012: 18th International Conference on Virtual Systems and Multimedia, 2012.

[18] A. Seoane and A. Jaspe, “Ia algorithm acceleration using gpus.” in Encyclopedia of Artificial Intelligence, J. R. Rabual, J. Dorado, and

A. Pazos, Eds. IGI Global, 2009, pp. 873–878.

[19] NVIDIA, “Cuda libraries,” Presentation, 2007.

[20] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for heterogeneous computing systems,” Computing in

Science & Engineering, vol. 12, no. 3, pp. 66–73, 2010.

[21] J. Yang and L. Howes, “Advanced directx technology: Directcompute by example,” in Proceedings of Game Developers Conference Europe

2010, 2010.

[22] D. Kirk, “Nvidia cuda software and gpu parallel computing architecture,” in Proceedings of the 6th International Symposium on Memory

Management, 2007.

[23] J. C. Thibault and I. Senocak, “Cuda implementation of a navier-stokes solver on multi-gpu desktop platforms for incompressible flows,”

in Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.

[24] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei W. Hwu, “Optimization principles and application

performance evaluation of a multithreaded gpu using cuda,” in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2008.

[25] Apple, “Apple previews mac os x snow leopard to developers,” Press Release, June 2008.

[26] P. Jääskeläinen, C. S. de La Lama, P. Huerta, and J. Takala, “Opencl-based design methodology for application-specific processors.” in

Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, F. J. Kurdahi and

J. Takala, Eds. IEEE, 2010, pp. 223–230.

[27] S. de Smet, “An opencl fast fourier transformation,” Project Report, 2011.

[28] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell, R. M. Badia, E. Ayguade, and J. Labarta, “Optimizing the exploitation

of multicore processors and gpus with openmp and opencl,” in Proceedings of the 23rd International Conference on Languages and

Compilers for Parallel Computing, 2010, pp. 215–229.

[29] E. Chung, P. Milder, J. Hoe, and K. Mai, “Single-chip heterogeneous computing: Does the future include custom logic, fpgas, and gpgpus?”

in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International Symposium on, dec. 2010, pp. 225 –236.

[30] T. Ni, “Direct compute - bring gpu computing to the mainstream,” in GPU Technology Conference, 2009.

[31] W. Engel, “Microsoft directcompute on intel ivy bridge processor graphics,” Intel Corporation/Confetti Inc., Tech. Rep., 2012.

[32] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A performance study of general-purpose applications on graphics

processors using cuda,” Journal of Parallel and Distributed Computing, vol. 68, no. 10, pp. 1370–1380, October 2008.

[33] G. Gunasekaran, “Study of performance for the cpu and gpu architecture,” International Journal of Research in IT, Management and

Engineering, vol. 2, no. 2, pp. 33–44, February 2012.

[34] N. Thibieroz and C. Cebenoyan, “Directcompute performance on dx11 hardware,” in Proceedings of Game Developers Conference 2010,

2010.

[35] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi, “Evaluating performance and portability of opencl programs,”

in Proceedings of the Fifth International Workshop on Automatic Performance Tuning, 2010.

[36] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of cuda and opencl,” CoRR, vol. abs/1005.2581, 2010.

[37] M. Harvey, “Experiences porting from cuda to opencl,” Presentation, December 2009.

[38] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From cuda to opencl: Towards a performance-portable solution

for multi-platform gpu programming,” 2011.

[39] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance comparison of cuda and opencl,” in Proceedings of ICPP 2011:

International Conference on Parallel Processing, 2011, pp. 216–225.

[40] M. Fratarcangeli, “Gpgpu cloth simulation using glsl, opencl, and cuda,” in Game Engine Gems 2, E. Lengyel, Ed. A K Peters / CRC

Press, 2011, ch. 22, pp. 365–378.

April 11, 2013 DRAFT



18 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

[41] X. Zhang, B. Wang, and C. Geng, “Gpu-based background generation method,” in Proceedings of the IET International Communication

Conference on Wireless Mobile and Computing (CCWMC 2011), 2011.

[42] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,

and P. Dubey, “Debunking the 100x gpu vs. cpu myth: An evaluation of throughput computing on cpu and gpu,” in Proceedings of the

37th International Symposium on Computer Architecture, June 2010, pp. 451–460.

[43] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu vs. gpu performance without the answer,” in Proceedings

of the IEEE International Symposium on Performance Analysis of Systems and Software, ser. ISPASS ’11. Washington, DC, USA: IEEE

Computer Society, 2011, pp. 134–144. [Online]. Available: http://dx.doi.org/10.1109/ISPASS.2011.5762730

[44] J. Shopf, J. Barczak, C. Oat, and N. Tatarchuk, “March of the froblins: Simulation and rendering massive crowds of intelligent and detailed

creatures on gpu,” in SIGGRAPH. ACM, August 2008, pp. 52–101.

[45] S. Rul, H. Vandierendonck, J. D’Haene, and K. De Bosschere, “An experimental study on performance portability of opencl kernels,” in

Proceedings of the 2010 Symposium on Application Accelerators in High Performance Computing, 2010.

[46] F. Jacob, D. Whittaker, S. Thapaliya, P. Bangalore, M. Mernik, and J. Gray, “Cudacl: A tool for cuda and opencl programmers,” in

Proceedings of the 2010 International Conference on High Performance Computing (HiPC), 2010.

[47] Y. Yan, M. Grossman, and V. Sarkar, “Jcuda: A programmer-friendly interface for accelerating java programs with cuda,” in Euro-Par.

Springer-Verlag Berlin Heidelberg, 2009, pp. 887–899.

[48] G. Dotzler, R. Veldema, and M. Klemm, “Jcudamp: Openmp/java on cuda,” in Proceedings of the 3rd International Workshop on Multicore

Software Engineering, 2010.

[49] M. Zamith, E. Clua, A. Conci, and A. Montenegro, “Parallel processing between gpu and cpu: Concepts in a game architecture,” in

Computer Graphics, Imaging and Visualisation, 2007. CGIV ’07, aug. 2007, pp. 115 –120.

[50] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions of

Systems Science and Cybernetics, vol. 4, pp. 100–107, 1968.

[51] D. Higgins, “Generic a* pathfinding,” in AI Game Programming Wisdom, S. Rabin, Ed. Charles River Media, Inc., Massachusetts, 2002,

ch. 3.2, pp. 114–121.

[52] ——, “Pathfinding design architecture,” in AI Game Programming Wisdom, S. Rabin, Ed. Charles River Media, Inc., Massachusetts,

2002, ch. 3.3, pp. 122–132.

[53] B. Anguelov, “Video game pathfinding and improvements to discrete search on grid-based maps,” Master’s thesis, Faculty of Engineering,

Built Environment and Information Technology, University of Pretoria, June 2011.

[54] D. Silver, “Cooperative pathfinding,” in AI Game Programming Wisdom 3, S. Rabin, Ed. Charles River Media, Inc., Massachusetts, 2006,

ch. 2.1, pp. 99–112.

[55] A. Bleiweiss, “Gpu accelerated pathfinding,” in Graphics Hardware, D. Luebke and J. D. Owens, Eds. The Eurographics Association,

2008.

[56] A. Silva, F. Rocha, A. Santos, G. Ramalho, and V. Teichreib, “Gpu pathfinding optimization,” in Proceedings of the 2011 Brazilian

Symposium on Games and Digital Entertainment (SBGames’11), 2011.

[57] R. Zioma, “Preprocessed pathfinding using the gpu,” in AI Game Programming Wisdom 3, S. Rabin, Ed. Charles River Media, Inc.,

Massachusetts, 2006, ch. 2.4, pp. 141–156.

[58] A. Buluç, J. R. Gilbert, and C. Budak, “Solving path problems on the gpu,” Parallel Comput., vol. 36, no. 5-6, pp. 241–253, Jun. 2010.

[Online]. Available: http://dx.doi.org/10.1016/j.parco.2009.12.002

[59] F. Dapper, E. Prestes, and L. P. Nedel, “Generating steering behaviors for virtual humanoids using bvp control,” in Proceedings of CGI,

2007.

[60] L. G. Fischer, R. Silveira, and L. Nedel, “Gpu accelerated path-planning for multi-agents in virtual environments,” in Proceedings of the

8th Brazilian Symposium on Games and Digital Entertainment (SBGames’09), 2009, pp. 101–110.

[61] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,” IEEE Transactions on Automatic Control, vol. 40, pp. 1528–1538,

1995.

[62] A. Bleiweiss, “Multi agent navigation on the gpu,” in Proceedings of Game Developers Conference 2009, 2009.

[63] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The International Journal of Robotics

Research, vol. 17, pp. 760–772, 1998.

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 19

[64] Y. Zhou and Y. Tan, “Gpu-based parallel particle swarm optimization,” in Proceedings of the 2009 IEEE Congress on Evolutionary

Computation (IEEE CEC 2009), 2009, pp. 1493–1500.

[65] ——, “Gpu-based parallel multi-objective particle swarm optimization,” International Journal of Artificial Intelligence, vol. 7, pp. 125–141,

2011.

[66] E. Passos, M. Joselli, M. Zamith, J. Rocha, A. Montenegro, E. Clua, A. Conci, and B. Feijó, “Supermassive crowd simulation on gpu

based on emergent behavior,” in Proceedings of the 7th Brazilian Symposium on Games and Digital Entertainment (SBGames’08), 2008,

pp. 81–86.

[67] A. R. da Silva, W. S. Lages, and L. Chaimowicz, “Improving boids algorithm in gpu using estimated self occlusion,” in Proceedings of

the 7th Brazilian Symposium on Games and Digital Entertainment (SBGames’08), November 2008, pp. 41–46.

[68] L. G. O. dos Santos, E. W. G. Clua, and F. C. Bernardini, “A parallel fipa architecture based on gpu for games and real time simulations,”

in Proceedings of the 11th International Conference on Entertainment Computing (ICEC 2012), 2012.

[69] A. Demeulemeester, C.-F. Hollemeersch, P. Mees, B. Pieters, P. Lambert, and R. V. de Walle, “Hybrid path planning for massive crowd

simulation on the gpu,” in MIG’11 Proceedings of the 4th international conference on Motion in Games, 2011.

[70] T. Vykruta, “Simple and efficient line-of-sight for 3d landscapes,” in AI Game Programming Wisdom, S. Rabin, Ed. Charles River Media,

Inc., Massachusetts, 2002, ch. 2.7, pp. 83–89.

[71] D. Manocha, “General-purpose computations using graphics processors,” Computer, vol. 38, pp. 85–88, 2005.

[72] K. S. Perumalla, “Discrete-event execution alternatives on general purpose graphical processing units (gpgpus),” in Proceedings of the

20th Workshop on Principles of Advanced and Distributed Simulation, 2006, pp. 74–81.

[73] M. Verdesca, J. Munro, and M. Hoffman, “Using graphics processor units to accelerate onesaf: A case study in technology transition,” in

Proceedings of the 2005 Interservice/Industry Training, Simulation and Education Conference (I/ITSEC 2005), 2005.

[74] B. Salomon, N. Govindaraju, A. Sud, R. Gayle, M. Lin, D. Manocha, B. Butler, M. Bauer, A. Rodriquez, L. Eifert, A. Rubel, and

M. Macedonia, “Accelerating line of sight computation using graphics processing units,” in Proceedings of the 24th Army Science

Conference, 2004.

[75] A. D. Britton, “Full cuda implementation of gpgpu recursive ray-tracing,” Master’s thesis, Department of Computer Graphics Technology,

Purdue University, 2010.

[76] J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor computation for gpu-based motion planning,” in Proceedings of the

2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, pp. 2243–2248.

[77] I. J. Peinado, “Exploiting contemporary architectures for fast nearest neighbor classification,” Master’s thesis, Department of Computer

Architecture, Universitat Politècnica de Catalunya, January 2010.

[78] A. R. da Silva, W. S. Lages, and L. Chaimowicz, “Boids that see: Using self-occlusion for simulating large groups on gpus,” ACM

Computers in Entertainment, vol. 7, pp. 51:1–51:20, 2009.

[79] M. Joselli, E. B. Passos, M. Zamith, E. Clua, A. Montenegro, and B. Feijó, “A neighbourhood grid data structure for massive 3d crowd

simulation on gpu,” in Proceedings of the 8th Brazilian Symposium on Games and Digital Entertainment (SBGames’09), 2009.

[80] P. Tozour, “Search space representations,” in AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media, Inc., Massachusetts,

2004, ch. 2.1, pp. 85–102.

[81] D. Isla, “Probabilistic target tracking and search using occupancy maps,” in AI Game Programming Wisdom 3, S. Rabin, Ed. Charles

River Media, Inc., Massachusetts, 2006, ch. 5.1, pp. 379–388.

[82] J. Orkin, “Applying goal-oriented action planning to games,” in AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River Media,

Inc., Massachusetts, 2004, ch. 3.4, pp. 217–228.

[83] F. Krüger, O. Maitre, S. Jiménez, L. Baumes, and P. Collet, “Speedups between x70 and x120 for a generic local search (memetic)

algorithm on a single gpgpu chip,” Lecture Notes in Computer Science, vol. 6024, pp. 501–511, 2010.

[84] S. Edelkamp and D. Sulewski, “Parallel state space search on the gpu,” in Proceedings of the 2009 International Symposium on

Combinatorial Search (SoCS), 2009.

[85] K. Ryan, “An evaluation of gpus for accelerating a selected string searching algorithm,” VeriSign Labs, Tech. Rep., 2010.

[86] K. Rocki and R. Suda, “Parallel minimax tree searching on gpu,” in Proceedings of the 8th International Conference on Parallel Processing

and Applied Mathematics, 2009, pp. 449–456.

[87] ——, “Accelerating parallel monte carlo tree search using cuda,” in GPU Technology Conference, 2012.

April 11, 2013 DRAFT



20 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES

[88] A. Bleiweiss, “Playing zero-sum games on the gpu,” in GPU Technology Conference 2010, 2010.

[89] T. Thompson, L. McMillan, J. Levine, and A. Andrew, “An evaluaton of the benefits of look-ahead in pac-man,” in Proceedings of the

2008 IEEE Symposium on Computational Intelligence and Games. CIG’08, 2008, pp. 310–315.

[90] E. Yiskis, “Finite-state machine scripting language for designers,” in AI Game Programming Wisdom 2, S. Rabin, Ed. Charles River

Media, Inc., Massachusetts, 2004, ch. 5.4, pp. 319–326.

[91] I. Rudomı́n, E. Millán, and B. Hernández, “Fragment shaders for agent animation using finite state machines,” Simulation Modelling

Practice and Theory, vol. 13, pp. 741–751, 2005.

[92] M. Hayenga and M. Shaw, “Extended finite automata on stream-oriented architectures using rapidmind,” 2007.

[93] N. Goyal, J. Ormont, R. Smith, K. Sankaralingam, and C. Estan, “Signature matching in network processing using simd/gpu architectures,”

The University of Wisconsin-Madison, Department of Computer Sciences, Tech. Rep., 2008.

[94] M. Joselli and E. Clua, “Gpu wars: Design and implementation of a gpgpu game,” in Proceedings of the 8th Brazilian Symposium on

Games and Digital Entertainment (SBGames’09), 2009, pp. 132–140.

[95] B. Leung, C.-H. Wu, S. Memik, and S. Mehrotra, “An interior point optimization solver for real time inter-frame collision detection:

Exploring resource-accuracy-platform tradeoffs,” in Proceedings of the 2010 International Conference on Field Programmable Logic and

Applications (FPL), 31 2010-sept. 2 2010, pp. 113 –118.

[96] P. Richmond, D. Walker, S. Coakley, and D. Romano, “High performance cellular level agent-based simulation with flame for the gpu,”

Briefing in Bioinformatics, 2010.

[97] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan, “Scaling games to epic proportions,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2007, pp. 31–42.

[98] P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu with cuda,” in Proceedings of the 3rd Workshop on General-

Purpose Computation on Graphics Processing Units, 2010.

[99] V. Hristov, “Performance evaluation of query processing algorithms on gpgpus,” Master’s thesis, School of Informatics, University of

Edinburgh, 2010.

William Blewitt obtained a B.Sc degree in Physics with Space Science and Technology at the University of Leicester

in 2004, before earning a M.Sc degree in Computational Intelligence and Robotics at De Montfort University in 2006.

During his PhD in Computer Science at De Montfort University, he researched computationally inexpensive emotion

modelling for AI agents before studying a M.Sc in Computer Game Engineering at Newcastle University. He joined

the game technology research group at Newcastle University in 2012, where his research interests include modelling

believable agents in real-time systems, heterogeneous computing solutions for AI, and optimisations of general purpose

GPU computing for commercial application.

Gary Ushaw received the B.Sc degree in Electronics from the University of Manchester Institute of Science and

Technology (UMIST) in 1987, and the PhD in Signal Processing from the University of Edinburgh in 1995. From

1987 to 1991 he worked as an electrical engineer on large scale public projects for communications and control,

working with CEGB, British Rail, and the combined electricity generating boards of India. From 1995 to 2011, he

worked in the games industry as software engineer and later as engineering manager, focusing on high-end console

gaming with publishers including Ubisoft, Sony, Rockstar, BBC and Atari. In 2011 he joined the teaching staff at

Newcastle University School of Computing Science, concentrating on video game engineering, rehabilitative gaming,

and multicore systems.

DRAFT April 11, 2013



BLEWITT et al.: APPLICABILITY OF GPGPU COMPUTING TO REAL-TIME AI SOLUTIONS IN GAMES 21

Graham Morgan gained his PhD in 1999 and spent the time since studying a variety of areas in computing. With a

research background in systems, Graham has published many articles on the engineering challenges related to video

game development. This has included collision detection, online gaming, physics engines, graphics, AI and multi-core

exploitation techniques.

April 11, 2013 DRAFT


